Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36484697

RESUMO

MOTIVATION: To provide high quality, computationally tractable annotation of binding sites for biologically relevant (cognate) ligands in UniProtKB using the chemical ontology ChEBI (Chemical Entities of Biological Interest), to better support efforts to study and predict functionally relevant interactions between protein sequences and structures and small molecule ligands. RESULTS: We structured the data model for cognate ligand binding site annotations in UniProtKB and performed a complete reannotation of all cognate ligand binding sites using stable unique identifiers from ChEBI, which we now use as the reference vocabulary for all such annotations. We developed improved search and query facilities for cognate ligands in the UniProt website, REST API and SPARQL endpoint that leverage the chemical structure data, nomenclature and classification that ChEBI provides. AVAILABILITY AND IMPLEMENTATION: Binding site annotations for cognate ligands described using ChEBI are available for UniProtKB protein sequence records in several formats (text, XML and RDF) and are freely available to query and download through the UniProt website (www.uniprot.org), REST API (www.uniprot.org/help/api), SPARQL endpoint (sparql.uniprot.org/) and FTP site (https://ftp.uniprot.org/pub/databases/uniprot/). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Bases de Conhecimento , Bases de Dados de Proteínas , Ligantes , Sequência de Aminoácidos , Sítios de Ligação , Anotação de Sequência Molecular
3.
Bioinformatics ; 36(17): 4643-4648, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32399560

RESUMO

MOTIVATION: The number of protein records in the UniProt Knowledgebase (UniProtKB: https://www.uniprot.org) continues to grow rapidly as a result of genome sequencing and the prediction of protein-coding genes. Providing functional annotation for these proteins presents a significant and continuing challenge. RESULTS: In response to this challenge, UniProt has developed a method of annotation, known as UniRule, based on expertly curated rules, which integrates related systems (RuleBase, HAMAP, PIRSR, PIRNR) developed by the members of the UniProt consortium. UniRule uses protein family signatures from InterPro, combined with taxonomic and other constraints, to select sets of reviewed proteins which have common functional properties supported by experimental evidence. This annotation is propagated to unreviewed records in UniProtKB that meet the same selection criteria, most of which do not have (and are never likely to have) experimentally verified functional annotation. Release 2020_01 of UniProtKB contains 6496 UniRule rules which provide annotation for 53 million proteins, accounting for 30% of the 178 million records in UniProtKB. UniRule provides scalable enrichment of annotation in UniProtKB. AVAILABILITY AND IMPLEMENTATION: UniRule rules are integrated into UniProtKB and can be viewed at https://www.uniprot.org/unirule/. UniRule rules and the code required to run the rules, are publicly available for researchers who wish to annotate their own sequences. The implementation used to run the rules is known as UniFIRE and is available at https://gitlab.ebi.ac.uk/uniprot-public/unifire.


Assuntos
Bases de Conhecimento , Proteínas , Mapeamento Cromossômico , Bases de Dados de Proteínas , Anotação de Sequência Molecular , Proteínas/genética
4.
Gigascience ; 9(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32034905

RESUMO

BACKGROUND: Genome and proteome annotation pipelines are generally custom built and not easily reusable by other groups. This leads to duplication of effort, increased costs, and suboptimal annotation quality. One way to address these issues is to encourage the adoption of annotation standards and technological solutions that enable the sharing of biological knowledge and tools for genome and proteome annotation. RESULTS: Here we demonstrate one approach to generate portable genome and proteome annotation pipelines that users can run without recourse to custom software. This proof of concept uses our own rule-based annotation pipeline HAMAP, which provides functional annotation for protein sequences to the same depth and quality as UniProtKB/Swiss-Prot, and the World Wide Web Consortium (W3C) standards Resource Description Framework (RDF) and SPARQL (a recursive acronym for the SPARQL Protocol and RDF Query Language). We translate complex HAMAP rules into the W3C standard SPARQL 1.1 syntax, and then apply them to protein sequences in RDF format using freely available SPARQL engines. This approach supports the generation of annotation that is identical to that generated by our own in-house pipeline, using standard, off-the-shelf solutions, and is applicable to any genome or proteome annotation pipeline. CONCLUSIONS: HAMAP SPARQL rules are freely available for download from the HAMAP FTP site, ftp://ftp.expasy.org/databases/hamap/sparql/, under the CC-BY-ND 4.0 license. The annotations generated by the rules are under the CC-BY 4.0 license. A tutorial and supplementary code to use HAMAP as SPARQL are available on GitHub at https://github.com/sib-swiss/HAMAP-SPARQL, and general documentation about HAMAP can be found on the HAMAP website at https://hamap.expasy.org.


Assuntos
Genômica/métodos , Anotação de Sequência Molecular/métodos , Análise de Sequência de DNA/métodos , Análise de Sequência de Proteína/métodos , Software/normas , Animais , Genômica/normas , Humanos , Anotação de Sequência Molecular/normas , Análise de Sequência de DNA/normas , Análise de Sequência de Proteína/normas
5.
Bioinformatics ; 36(6): 1896-1901, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31688925

RESUMO

MOTIVATION: To provide high quality computationally tractable enzyme annotation in UniProtKB using Rhea, a comprehensive expert-curated knowledgebase of biochemical reactions which describes reaction participants using the ChEBI (Chemical Entities of Biological Interest) ontology. RESULTS: We replaced existing textual descriptions of biochemical reactions in UniProtKB with their equivalents from Rhea, which is now the standard for annotation of enzymatic reactions in UniProtKB. We developed improved search and query facilities for the UniProt website, REST API and SPARQL endpoint that leverage the chemical structure data, nomenclature and classification that Rhea and ChEBI provide. AVAILABILITY AND IMPLEMENTATION: UniProtKB at https://www.uniprot.org; UniProt REST API at https://www.uniprot.org/help/api; UniProt SPARQL endpoint at https://sparql.uniprot.org/; Rhea at https://www.rhea-db.org.


Assuntos
Reiformes , Animais , Bases de Dados de Proteínas , Bases de Conhecimento
6.
Artigo em Inglês | MEDLINE | ID: mdl-26896845

RESUMO

Advances in high-throughput and advanced technologies allow researchers to routinely perform whole genome and proteome analysis. For this purpose, they need high-quality resources providing comprehensive gene and protein sets for their organisms of interest. Using the example of the human proteome, we will describe the content of a complete proteome in the UniProt Knowledgebase (UniProtKB). We will show how manual expert curation of UniProtKB/Swiss-Prot is complemented by expert-driven automatic annotation to build a comprehensive, high-quality and traceable resource. We will also illustrate how the complexity of the human proteome is captured and structured in UniProtKB. Database URL: www.uniprot.org.


Assuntos
Bases de Dados de Proteínas , Proteoma/genética , Proteômica/métodos , Automação , Genoma , Humanos , Bases de Conhecimento , Fenótipo , Processamento de Proteína Pós-Traducional , Proteínas/química , Edição de RNA , Software
7.
Nucleic Acids Res ; 43(Database issue): D1064-70, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25348399

RESUMO

HAMAP (High-quality Automated and Manual Annotation of Proteins--available at http://hamap.expasy.org/) is a system for the automatic classification and annotation of protein sequences. HAMAP provides annotation of the same quality and detail as UniProtKB/Swiss-Prot, using manually curated profiles for protein sequence family classification and expert curated rules for functional annotation of family members. HAMAP data and tools are made available through our website and as part of the UniRule pipeline of UniProt, providing annotation for millions of unreviewed sequences of UniProtKB/TrEMBL. Here we report on the growth of HAMAP and updates to the HAMAP system since our last report in the NAR Database Issue of 2013. We continue to augment HAMAP with new family profiles and annotation rules as new protein families are characterized and annotated in UniProtKB/Swiss-Prot; the latest version of HAMAP (as of 3 September 2014) contains 1983 family classification profiles and 1998 annotation rules (up from 1780 and 1720). We demonstrate how the complex logic of HAMAP rules allows for precise annotation of individual functional variants within large homologous protein families. We also describe improvements to our web-based tool HAMAP-Scan which simplify the classification and annotation of sequences, and the incorporation of an improved sequence-profile search algorithm.


Assuntos
Bases de Dados de Proteínas , Anotação de Sequência Molecular , Homologia de Sequência de Aminoácidos , Humanos , Internet , Proteínas/classificação
8.
Nucleic Acids Res ; 41(Database issue): D584-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23193261

RESUMO

HAMAP (High-quality Automated and Manual Annotation of Proteins-available at http://hamap.expasy.org/) is a system for the classification and annotation of protein sequences. It consists of a collection of manually curated family profiles for protein classification, and associated annotation rules that specify annotations that apply to family members. HAMAP was originally developed to support the manual curation of UniProtKB/Swiss-Prot records describing microbial proteins. Here we describe new developments in HAMAP, including the extension of HAMAP to eukaryotic proteins, the use of HAMAP in the automated annotation of UniProtKB/TrEMBL, providing high-quality annotation for millions of protein sequences, and the future integration of HAMAP into a unified system for UniProtKB annotation, UniRule. HAMAP is continuously updated by expert curators with new family profiles and annotation rules as new protein families are characterized. The collection of HAMAP family classification profiles and annotation rules can be browsed and viewed on the HAMAP website, which also provides an interface to scan user sequences against HAMAP profiles.


Assuntos
Bases de Dados de Proteínas , Anotação de Sequência Molecular , Proteínas/classificação , Eucariotos/genética , Internet
9.
Nucleic Acids Res ; 40(Web Server issue): W597-603, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22661580

RESUMO

ExPASy (http://www.expasy.org) has worldwide reputation as one of the main bioinformatics resources for proteomics. It has now evolved, becoming an extensible and integrative portal accessing many scientific resources, databases and software tools in different areas of life sciences. Scientists can henceforth access seamlessly a wide range of resources in many different domains, such as proteomics, genomics, phylogeny/evolution, systems biology, population genetics, transcriptomics, etc. The individual resources (databases, web-based and downloadable software tools) are hosted in a 'decentralized' way by different groups of the SIB Swiss Institute of Bioinformatics and partner institutions. Specifically, a single web portal provides a common entry point to a wide range of resources developed and operated by different SIB groups and external institutions. The portal features a search function across 'selected' resources. Additionally, the availability and usage of resources are monitored. The portal is aimed for both expert users and people who are not familiar with a specific domain in life sciences. The new web interface provides, in particular, visual guidance for newcomers to ExPASy.


Assuntos
Biologia Computacional , Proteômica , Software , Gráficos por Computador , Genômica , Internet , Integração de Sistemas , Interface Usuário-Computador
10.
Nucleic Acids Res ; 37(Database issue): D471-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18849571

RESUMO

The growth in the number of completely sequenced microbial genomes (bacterial and archaeal) has generated a need for a procedure that provides UniProtKB/Swiss-Prot-quality annotation to as many protein sequences as possible. We have devised a semi-automated system, HAMAP (High-quality Automated and Manual Annotation of microbial Proteomes), that uses manually built annotation templates for protein families to propagate annotation to all members of manually defined protein families, using very strict criteria. The HAMAP system is composed of two databases, the proteome database and the family database, and of an automatic annotation pipeline. The proteome database comprises biological and sequence information for each completely sequenced microbial proteome, and it offers several tools for CDS searches, BLAST options and retrieval of specific sets of proteins. The family database currently comprises more than 1500 manually curated protein families and their annotation templates that are used to annotate proteins that belong to one of the HAMAP families. On the HAMAP website, individual sequences as well as whole genomes can be scanned against all HAMAP families. The system provides warnings for the absence of conserved amino acid residues, unusual sequence length, etc. Thanks to the implementation of HAMAP, more than 200,000 microbial proteins have been fully annotated in UniProtKB/Swiss-Prot (HAMAP website: http://www.expasy.org/sprot/hamap).


Assuntos
Proteínas Arqueais/química , Proteínas de Bactérias/química , Bases de Dados de Proteínas , Proteômica , Proteínas Arqueais/classificação , Proteínas Arqueais/genética , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Genômica , Proteoma/química , Alinhamento de Sequência , Análise de Sequência de Proteína , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...